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Abstract—In this work, we compute the sensitivity of wound
inductors RL parameters extracted using the Finite Element (FE)
method with respect to geometric and material uncertainties,
along a wide range of frequencies (from DC to 1 MHz). To that
end, we compute the Sobol indices associated to a Polynomial
Chaos Expansion based surrogate model of the uncertain FE
model thanks to Bayesian inference technique.

Index Terms—Finite element method, random input, surrogate
model, Bayesian inference, wound inductors

I. INTRODUCTION

Numerical models of a physical system almost always
depend on uncertain parameters. For instance, wound inductors
are characterized by material (i.e. material properties which are
not known precisely) and geometric (i.e. conductors positions
in the winding window) uncertainties. A correct modelling of
such uncertainties, as well as a good understanding of the
sensitivity of physical quantities w.r.t uncertainties, is funda-
mental for ensuring an optimal design of the component. The
Finite Element (FE) method can be employed to capture these
uncertainties in RLC models using a Monte Carlo simulation
approach [1]. However, performing a sensitivity analysis with
such a model is very CPU intensive. In this work, we develop a
stochastic surrogate model of wound inductors based on chaos
polynomial expansion (PCE), in order to mitigate this problem.
We then compute the Sobol indices [2], [3] over a wide range
of frequencies (from DC to 1 MHz) in order to quantify the
sensitivity of the PCE surrogate.

II. METHODOLOGY

The overall methodology is built upon a 2D magnetody-
namic FE model [4] for the extraction of RL parameters,
in combination with an original algorithm mimicking the
manual wounding operation [5] in order to model the uncertain
positions of conductors in the winding window. It is depicted
in Fig. 1. We compute a PCE surrogate in order to reduce
the number of numerical model calls needed to perform a
Monte Carlo simulation (with a brute FE model). In addition
to this, we compute the Sobol coefficients from the PCE
surrogate which does not require any additional evaluation

of the deterministic model (which is expensive in terms of
resources and computation time) once it has been built.

According to this chart, Niter is the number of iterations
needed to build the PCE surrogate from distributions of the
reduced random input vector. Niter is limited by Nmax which
is linked to the dimension of random input vector [5]. In
our case, without the homogenization process which allows
us to transform geometrical uncertainties into material ones,
this dimension can easily reach an order of magnitude close
to 100.

The uncertainties taken into account in this study arise from
random positions of conductors in the winding window and
from material properties of ferrite core (magnetic permeability
µ
core

and electrical conductivity σcore). The complex form of
material properties allows to take into account in a natural way
the electrical and magnetic losses in finite element formula-
tions.

Due to the high number of Monte Carlo iterations with an
embedded time-consuming FE based model, especially with
regard to the high number of geometric uncertainties, the
reduction in the dimension of the problem is achieved through
the transformation of geometrical uncertainties (positions of
conductors) into material ones (equivalent magnetic reluctivity
νprox related to the proximity effect and equivalent impedance
Zskin related to the skin effect) via homogenization technique
[6].

A 2D magneto harmonic formulation with massive con-
ductors and appropriate limit conditions on an optimal RVE
(Representative Volume Element) [7] in the winding, allow to
extract the desired equivalent properties (electric conductivity
and magnetic reluctivity for instance). Finally, the dimension
of the random input is reduced to 7 components, among which
we find:

• X1 = Re (Zskin), image of losses due to skin effect
phenomena in the winding;

• X2 = Im (Zskin), image of the reactive power transmit-
ted by the winding;

• X3 = Re
(
νprox

)
, image of the energy associated with

the proximity effect in the winding;
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Fig. 1. Process of PCE surrogate construction.

• X4 = Im
(
νprox

)
, image of losses linked to the proxim-

ity effect between conductors;
• X5 = Re (νcore), image of the magnetic energy in the

ferrite core;
• X6 = Im (νcore), image of the ferrite core losses;
• X7 = σcore, image of losses due to the eddy current in

the ferrite core. It is a scalar depending on the imaginary
part of the electric permittivity εcore.

This dimension reduction of the random vector input is
benefit for sensitivity analysis of the model i.e. when studying
the behaviour of a numerical model due to the random
variability of input parameters. This kind of analysis may be
computationally intensive when using Monte Carlo simulation
to compute Sobol coefficients [3] which allow to determine the
influence of random inputs on outputs of the model. To deal
with this difficulty, we use a stochastic surrogate model based
on PCE. This is due to one of the important properties of PCE,
that of containing information on their ANOVA (Analysis Of
Variance) decomposition.

For the computation of the PCE surrogate model, we need
to know distribution law of the obtained reduced random
input vector. This problem is associated to the inverse prob-
lem where unknown parameters (related to distributions) are
estimated based on experimental data which are indirectly
associated with these parameters through a computational
model [8]. This problem can be solved using Bayesian meth-
ods and particularly the Bayesian inference technique. This
technique consists of backward propagation of information
about observations in order to extract the distribution of
the model inputs. For instance, in statistical inference, one
considers that the data are made of independent realizations of
an underlying random vector and an assumption on the shape
of the probability density function PDF (Weibull, Gaussian,
log-normal, etc.). The used tools here are based on UQLab
[2] which is a framework that can be plugged into Matlab to
perform uncertainty quantification.

III. CASE STUDY

In this work, we analyse a typical commercial inductor
(MCSCH895-680KU, as illustrated in Fig. 2). It is made
up of a NiZn ferrite core type, with a 44-turns winding
distributed over 4 layers. The first three layers include 12 turns

Fig. 2. Illustration of the analysed component.

per layer. The conductor diameter is 0.37 mm. According to
the manufacturer, this inductor is characterized by a nominal
inductance value of 680 µH ± 10%. The material properties
of the ferrite core are modelled using a Debye relaxation
model along the frequency range of study [5]. In this model,
the random aspect is carried out by static quantities for
which the manufacturer often gives the relative error (20% for
magnetic permeability and 10% for electrical conductivity).
The dimension of the random input vector (set of geometrical
and material uncertainties) of the numerical model of the
studied inductor has been reduced to 7, among which, real
and imaginary parts of νprox, Zskin and µ

core
and the ferrite

core conductivity σcore. Results of sensitivity analysis will be
presented in the full paper.
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